STRONG RESONANCE PROBLEMS FOR THE ONE-DIMENSIONAL p-LAPLACIAN

نویسنده

  • JIŘÍ BOUCHALA
چکیده

We study the existence of the weak solution of the nonlinear boundary-value problem −(|u′|p−2u′)′ = λ|u|p−2u+ g(u)− h(x) in (0, π), u(0) = u(π) = 0 , where p and λ are real numbers, p > 1, h ∈ Lp (0, π) (p′ = p p−1 ) and the nonlinearity g : R → R is a continuous function of the Landesman-Lazer type. Our sufficiency conditions generalize the results published previously about the solvability of this problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESONANCE PROBLEMS FOR THE ONE-DIMENSIONAL p-LAPLACIAN

We consider resonance problems for the one dimensional p-Laplacian, and prove the existence of solutions assuming a standard LandesmanLazer condition. Our proofs use variational techniques to characterize the eigenvalues, and then to establish the solvability of the given boundary value problem.

متن کامل

Solvability for second-order nonlocal boundary value problems with a p-Laplacian at resonance on a half-line

This paper investigates the solvability of the second-order boundary value problems with the one-dimensional p-Laplacian at resonance on a half-line

متن کامل

A Note on Strong Resonance Problems for P-laplacian

In this note, we study the existence of the weak solutions for the p-Laplacian with strong resonance, which generalizes the previous results in one-dimension.

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005